
KINEMATICS OF FLOW OF A SLOW SUSPENDED-PARTICLE
FLUX ABOUT A SPHERE AS APPLIED TO THE
SEDIMENTATION OF A BIDISPERSE SUSPENSION
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A study is made of the kinematics of flow of fine particles about a coarse one in the process of sedimentation
of the fine particles. An approximate analytical solution for the increase in the settling rate of fine particles,
which is in good agreement with the approximation dependence obtained earlier as a result of numerical ex-
periment, has been found. It has been shown that a relatively weak entrainment of most of the fine particles
arriving at the peripheral region of the cell around the coarse particle is of primary importance for the effect
of acceleration of sedimentation. A comparison with the available experimental data is made.

In a strongly rarefied suspension, particles of different diameters settle at different rates, which leads to
the segregation of fractions by size. In this case, one can calculate the sedimentation rate for any fraction, assum-
ing that an arbitrarily taken particle settles as a single one. As the volume concentration of the solid phase in the
suspension increases, the motion of the particles is affected by neighboring particles and the sedimentation rate
changes. It has been noted, for example, that in polydisperse and bidisperse suspensions, in the case of certain (not
too high) concentrations, fine fractions sediment much more rapidly than single particles of the same size [1–5].
It can be assumed that this effect is responsible for the nonmonotonic dependence of the separation curve of a hy-
drocyclone, which indicates increased removal of a fine-grained fraction through an output device intended to re-
move the coarse-grained part of a material arriving at the apparatus [6, 7].

Purposeful use of the effect is possible, for example, in removing mechanical impurities from water, which
is often carried out in large-scale units (precipitators) operating with the use of the process of sedimentation [8].
Here the sedimentation of the most slowly settling finest fractions could be accelerated by the addition of a rela-
tively coarse rapidly sedimenting powder (for example, sand) of the appropriate coarseness rather than of special
chemical preparations, i.e., coagulators.

In explaining and describing the phenomenon of acceleration of the sedimentation of a fine fraction, we
will assume that it is caused by the entrainment of particles by the flow induced by a coarse particle.

Hydrodynamic Model. We restrict ourselves to the case of a bidisperse suspension. Since the particles of
radius rc of the coarse fraction settle more rapidly than fine ones of radius rf in a coordinate system tied to a
coarse particle, fine particles will move in the direction opposite to the direction of sedimentation (from the bottom
upward). Let us consider the motion of fine particles in the vicinity of one of the coarse particles, which will be
called spheres for brevity.

Since the volume of the boundary layer around each moving particle of radius r is in proportion to r3,
for particles that differ strongly in size we can consider that a fine particle, being in the vicinity of a coarse one
(sphere), is completely "buried" in the boundary layer of the latter and does not affect the flow in this layer.

To describe the hydrodynamic field around a sphere in the case of slow flow about it (Rec = ucrc
 ⁄ ν =

2g(ρp − ρliq)rc
3 ⁄ (9ρliqν

2) ≤ 1, which is quite justified for particles with rc = 10 µm) we can use, in the first approxi-
mation, the Stokes solution [9]
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where flow at a large distance from the sphere is assumed to be directed along the x axis; r2 = (x ⁄ rc)
2 + (y ⁄ rc)2,

(x ⁄ rc)
2 ≥ 1 and (y ⁄ rc)

2 ≥ 1. Then the motion of each fine particle relative to the sphere can be calculated on the basis
of the following system of kinematic equations:

dx
dt

 = u (x, y) − uf ,  
dy
dt

 = v (x, y) . (3)

We select the radius of a coarse particle rc as the length scale, the Stokes rate of settling of this particle
uc = 2(ρp − ρliq)rc

2g ⁄ (9η) as the velocity scale, and rc
 ⁄ uc as the characteristic time, i.e., we introduce the following

dimensionless variables: time τ = tuc
 ⁄ rc, coordinates X = x ⁄ rc, Y = y ⁄ rc, axial and radial velocities U =

u(x, y) ⁄ uc and W = v(x, y) ⁄ uc, and parameters of the Stokes rate of sedimentation of fine particles Uf = uf
 ⁄ uc.

Such consideration holds for flow about a unit sphere. The application of the model to description of the
sedimentation of an ensemble of particles is possible if the distance between the spheres R is considered to be
larger than their size rc.

Next we assume that the sphere is at the center of a cell which will be constructed in the form of a cyl-
inder of radius R and height 2R (Fig. 1). We seek to find the characteristics of the flow of fine particles in such
a cell. The parameters of the problem which occur because of the introduction of the cellular structure will be as
follows: size of the cell D = R ⁄ rc and coordinate Y0. It would appear natural that fine particles are distributed uni-
formly on the plane of entrance to the cell x = −D, i.e., the fraction of the particles inflowing thorough a circle
of radius y is equal to y2 ⁄ R2.

Unlike [4, 10, 11], where the outcomes of the model have been established based on numerical calcula-
tions, below the emphasis is on an approximate analytical examination of the properties of solutions.

Characteristics of Paths. The calculations of [10] give an idea of the paths of particles (Fig. 2). On the
basis of Fig. 1, the entire trajectory of enveloping of the sphere by a fine particle can be subdivided into indi-
vidual characteristic portions. This is particularly clearly demonstrated for low values of Y0 (Fig. 3).

According to the scheme (Fig. 3), the particle, entering the cell, approaches the sphere, moving rectiline-
arly. At a certain point (X0, Y0), the particle shifts to a circular orbit of radius r0 = √ X0

2 + Y0
2 . The value of

X0 can be determined by equating the velocities along the X and Y axes: U(X0, Y0) − Uf = W(X0, Y0). Assuming

Fig. 1. Model of a computational cell.

Fig. 2. Paths of individual particles (D = 10): 1) Uf = 0 and 2) 0.3.
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Y0 to be a small quantity and X0 to be a quantity much more than unity and employing the expansions in the
vicinity of the axial line Y = 0
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we arrive at the equation
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2
 , (6)

whence we find
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In actual fact, (7) is applicable at small Y0; therefore, it is more convenient to employ the expansion
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The correction factor α takes approximate account of the discarded terms of high orders in (4); α = 1.4 has been in-
troduced based on a comparison with numerical calculations. The particle velocity (longitudinal along the X axis) at
the points of change of the character of motion is minimum and can be found by substitution of (8) into expression
(4):
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Fig. 3. Scheme of subdivision of the path of a particle into portions.

Fig. 4. Influence of the coordinate of the point of entry of a particle into the
cell on the dependence of the longitudinal velocity of the particle on the coor-
dinate X: 1) Y0 = 0.01, 2) 0.5, 3) 1.0, 4) 1.5, 5) 2.0, 6) 2.5, and 7) 3.0.
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Dependences (8) and (9) (points 1–7 in Fig. 4) correspond approximately to the minima on the plots of the longitudi-
nal velocity of a particle which entered the cell with the coordinate Y0 as a function of the coordinate X.

The value of U(X0, Y0) can be used as the velocity scale of a fine particle in traversing the cell. For
small Y0 this velocity is low (fine particles are entrained by coarse ones), while for large Y0 it formally depends
just on 1 − Uf. From Fig. 4 it is seen that the particles entering the cell at a large distance from the central line
Y0 = 0 are not involved in circular motion and pass through the cell with a constant velocity ì  1 − Uf. For equal
diameters of the particles of both fractions Uf = 1 and U(X0, Y0) = 0; hence, there is no relative motion of the
particles.

To describe motion in a circular orbit it is better to use the solution of Stokes equations in spherical co-
ordinates [12]. For the tangential velocity we have

r0 
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 sin θ − Uf sin θ . (10)

The last term of (10) is a projection of the intrinsic sedimentation rate of a fine particle onto the θ axis. By using the
equality dX  = r0 sin θdθ, we find the velocity relation for X = 0 and X = X0:
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2 . (11)

When Y0 is small this relation is large. It tends to 1 for particles entering the cell at a large distance from the central
line, as is seen in Fig. 4.

The influence of the parameter Uf on the dependence of the longitudinal velocity for two values of the
coordinate Y0 is shown in Fig. 5. It is noteworthy that the coarser (more inert) the particle of the fine fraction,
the weaker the differences in the values of its velocity during the traversal of the cell. Clearly, for particles en-
tering the cell in the vicinity of the central line the influence of the flow generated by the sphere is stronger than
for particles penetrating into the cell at the periphery.

Time Characteristics. The main features of motion of a particle with time in the case of flow about a
sphere can be seen in Figs. 6 and 7. The motion is symmetric relative to the cross section X = 0 for all the initial
coordinates. This, in particular, means that it will suffice to consider the motion until the equator is reached, after
which the motion is repeated. At a large distance from the sphere, the motion is nearly uniform for particles with
all the initial coordinates. The particles with high values of Y0 also continue their uniform (and rectilinear) motion

Fig. 5. Influence of the intrinsic rate of sedimentation of a particle on the pro-
file of its longitudinal velocity for D = 5 and different values of the coordi-
nate of the point of entry into the cell: a) Y0 = 1 and b) Y0 = 0.01: 1) Uf =
0.1, 2) 0.2, 3) 0.3, 4) 0.4, and 5) 0.5.
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in traversing the layer  X  C 2, whereas the particles started for low values of Y0 sharply slow down their motion
in the axial direction, which is related to the shift to a circular orbit.

The motion of a particle along a straight line from −D to X0 approximately corresponds to the equation

dX
dτ

 = 1 − Uf + 
3

2X
 + ... , (12)

which should be solved for τ = 0 and X = −D.
Consideration can be simplified by taking a certain average velocity. Analyzing Fig. 6, we can see that on

this portion the uniformity of the motion along the X axis with a velocity (based on the expansion (4)) approxi-
mately equal to

sUt = 1 − Uf − 
3

2D √1 + (Y0
 ⁄ D)2

(13)

is sufficiently accurate. With such consideration, the time of traversal of the rectilinear portion will be

Fig. 6. Influence of the coordinate of the entry of a particle into the cell on
the dependence of the running time of the particle on the coordinate X for Uf
= 0.1 and D = 5: 1) Y0 = 0.01, 2) 0.25, 3) 0.5, 4) 1.0, 5) 2.5, and 6) 5.0.

Fig. 7. Kinematics of motion of particles of different size for D = 5 and dif-
ferent values of the coordinate of the point of entry into the cell: a) Y0 = 1
and b) Y0 = 0.01: 1) Uf = 0.1, 2) 0.2, 3) 0.3, 4) 0.4, and 5) 0.5.
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τ1 = 
D + X0

sUt
 . (14)

In accordance with the note to formula (7) for large Y0, the rectilinear portion of motion of the particle extends from
X = −D up to X = 0. In this case

τ1 C 
D

1 − Uf − 
a
D

 , (15)

where a = 3 ⁄ (2 √1 + (Y0
 ⁄ D)2)  can vary between 3/2 and 3/(2√ 2 ).

Integration of the equation of motion in a circular orbit r0 = √ X0
2 + Y0

2  with the initial condition τ = 0 and
θ = θ0 = arctan (Y0

 ⁄ X0) yields
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where

S (r0) C r0 

1 − 

3

4r0

 − 
1

4r0
3 − Uf





−1

 . (17)

In subsequent evaluations, we can take S(r0) C 3 ⁄ 2, assuming that Y0
 ⁄ X0 << 1 and Uf << 1.

When Y0 = 2 X0 , from (7) we formally have the equation
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which leads to the evaluation of the disappearance of the circular portion of the path for

Y∗  C 
6

(1 − Uf) α
 . (18)

This feature of motion is seen in Fig. 4. The maximum value for  X0  is accordingly equal to

 X∗   = 
3

(1 − Uf) α
 . (19)

Expressions (18) and (19) should be considered as estimating ones for the limit of the possibility of subdividing the
total path into individual portions of rectilinearly uniform and circular motion. The assumption Y0

 ⁄ X0 << 1 taken in de-
riving (7) does not hold upon reaching this limit.

The total time of stay (residence) of the particle in the cell is represented in the form

τr = 2 (τ1 + τ2) . (20)

Let us evaluate the contribution of each of these terms. When the values of Y0 are low, τ2 > τ1 predominates; with
distance from the central line the situation is the reverse. Beyond the circle of radius Y0 ≈ 2 X0  exp (−τ1 ⁄ S), the
time of stay of the particle in the cell is determined mainly by the period τ1. The fraction of particles which stay in
the cell for a long time due to the strongly curved path is equal to
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Accordingly, the role of such particles in the total flux of a sedimenting suspension is insignificant. The results of cal-
culations from formula (20) are given in Fig. 8.

Sedimentation Rate. Since the axial velocity of the flux of a liquid and hence fine particles will be dif-
ferent at different points of the cell, the time of stay in the cell will also be different for each fine particle. If
tj = t(yj) is the time of traversal of the control volume by a particle having the coordinate yj in the entrance cross
section x = −R, the mean velocity of this particle relative to a coarse one will be determined as up(yj) =
2R ⁄ t(yj) while the flux-mean velocity (under the assumption of a uniform distribution of particles in the entrance
cross section of the cell) can be computed as

supt = 
1

πR
2 ∫ 

0

R

2π yjup (yj) dyj = 
4

R
 ∫ 
0

R
yj

t (yj)
 dyj . (22)

The mean rate of sedimentation of fine particles in a laboratory coordinate system will be taken to be

us = uc − supt . (23)

Since there are two parameters in the problem, the solution sought for the sedimentation rate Us = us
 ⁄ uc acquires the

form

Us = F (Uf, D) . (24)

Equality (22) in dimensionless form will be

Us = 1 − 
4
D

 ∫ 
0

D
Y

τr (Y)
 dY . (25)

The expression for τr is given by formula (20). In integrating, we have to subdivide the interval [0, D] into two por-
tions. The formula for computations is transformed as
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D

 [J1 + J2] . (26)

Here (if the weak dependence of S and τ1 on Y is disregarded), the integral

Fig. 8. Time of stay of a particle vs. coordinate Y0 for D = 10: points, numeri-
cal calculation [11] [1) Uf = 0.1 and 2) 0.3]; curves, formula (20).
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 for the Airy function at high

values of the argument, restricting ourselves to two terms of the expansion (N = 2), we obtain (when 2τ1
 ⁄ S(r0) >> 1)
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Furthermore (if the weak dependence of τ1 on Y0 is disregarded), we have
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With allowance for this,
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The second term in (29) is small and must not be taken into account in what follows. In actual fact, this means that
the contribution of the particles with a strongly curved path is disregarded. This circumstance is well reflected by in-
equality (21).

Let us evaluate D ⁄ τ1 by eliminating particles with Y0 << 1 and employing (15):

D
τ1

 C 1 − Uf − a ⁄ D . (30)

Having taken a value of 1.3, which is intermediate between 3/(2√ 2 ) and 3/2, to evaluate a and having substituted (30)
into (29), we will have

Us C Uf + 1.3 
1
D

 . (31)

Expression (31) differs little from the formula derived in processing numerous computer-aided calculations (the con-
stant 1.35 instead of 1.3 at the term 1/D, which is quite explainable by the approximateness of the value taken for a).

With allowance for the relationship between 1.5D3 = CVc

−1 and Uf = uf
 ⁄ uc = (df

 ⁄ dc)
2 relation (31) leads

(in dimensional variables) to the equation

us
uf

 = 1 + 1.48 CVc

1 ⁄ 3 




dc
df





2

 . (32)
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Thus, the dependence (found in the course of numerical investigations [10, 11]) of the increase in the
sedimentation rate of the fine fraction of a bidisperse suspension on the concentration of coarse particles and on
the ratio of the sizes of the particles of both fractions has been explained in the course of the approximate analy-
sis.

Nontrivial, in particular, is the circumstance that a relatively weak entrainment of the main fraction of fine
particles arriving at the cell around the sphere in its peripheral region and not the small fraction of fine particles
whose paths are distorted in the course of flow about the sphere is of prime importance for the effect of accel-
eration of sedimentation.

This can be illustrated by direct calculations of Us from formula (25), in which the value λD (where λ is a
variable coefficient of "neglect" of the particles in the vicinity of the axial line) is taken as the lower limit of the
integral. Figure 9 shows the calculated dependences of the ratio of the mean sedimentation rate of fine particles
for λ ≠ 0 to the sedimentation rate computed for λ = 0 on the quantity λD. The calculations have been carried out
for three sizes of cells (three volume concentrations of the coarse fraction) for the relation of the diameters of the
fine and coarse particles Uf = 0.3. It is seen that for D = 5, 10, and 20 neglect of the particles entering the cell
in the vicinity of the axial line (λD < 1) changes the value of the mean sedimentation rate by no more than 5%.

Comparison with Experiment. Experiments on flotation (the physics of the phenomenon is the same as
for the case of sedimentation) of a polydisperse emulsion of particles (droplets) of paraffin oil in a vertical column
have been described in [3]. Kumar et al. derive the relation which makes it possible to compute the rate of flo-
tation (sedimentation) based on the measured values of the concentration for each fraction of the particles by size
and of the total volume concentration of the disperse phase at two points of the column: at the site of supply of
the emulsion and at a certain distance from it.

For the case of a 2.6% emulsion the data of [3] can be presented in the form of a linear dependence be-
tween the logarithms of the particle volumes and the corresponding flotation rates (the flotation rate was measured
in centimeters per second while the particle size was measured in microns):

log (us) = 0.34 log 




π
6

 df
3


 − 1.79 . (33)

Kumar et al. [3] also give the dependence for the Stokes rate, which is approximated for this case by the formula

log (uf) = 0.66 log 




π
6

 df
3


 − 3.07 . (34)

Fig. 9. Evaluation of the influence of neglect of the contribution of particles
entering the cell in the vicinity of the axis of symmetry on the mean sedimen-
tation rate: 1) D = 5, 2) 10, and 3) 20.
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These dependences and the dependence of the ratios of the measured flotation rates to the values of the
Stokes rates which is obtained on their basis

log 




us

uf
 − 1




 = − 0.69 log 





π
6

 df
3


 + 1.96 (35)

are given in Fig. 10.
Agreement between the experimental data and the theoretical dependence of the sedimentation rate on the

size of the particles of the fine fraction (32) is satisfactory. Clearly, a comparison of the theory constructed for a
bidisperse suspension and the experiments carried out for a polydisperse emulsion is possible only on a limited
scale.

If we take into account that the effect of entrainment is the stronger, the larger the ratio of the sizes of
the coarse and fine particles and take, in (32), the size dc equal to the maximum size of particles in the emulsion
(in the case in question this yields approximately dc

3 = 1.9⋅104 µm3, as is seen in Fig. 10), we can reduce formula
(35) to the form

log 




us
uf

 − 1



 = − 0.79 + 1.03 log 





(1.9⋅10
4)1

 ⁄ 3

df





2

 . (36)

Comparing (36) and (32) and having taken the total concentration of the dispersed material CV = 0.026
instead of CVc

, we find that the differences in these formulas are that the coefficients of log (dc
 ⁄ df)

2 differ by ap-
proximately 3% and relation (36) written in the form (32) also yields that 0.55 will stand in (32) instead of the
constant 1.48. Such a difference in the values of the constants is not surprising if we take into account the re-
placement of CVc

 by CV. If, conversely, the constant 1.48 is considered to be correct, from the comparison of (32)
and (36) we find that the concentration of coarse particles entraining fine ones is roughly equal to 0.0013, i.e., is
about 5% of the total volume of the particles.

The influence of the concentration of particles on the effect of entrainment has not been studied in [3]
systematically. However, it is of interest to note the measurements (given there) of the rates of flotation of the
particles of the emulsion of paraffin oil in water with addition of salt (the concentration of NaCl was 0.01
mole/liter) for a concentration of the disperse phase of 0.7%. As the processing of the data shows, the flotation
rates in this case obey the law

Fig. 10. Experimental data [3] on flotation (sedimentation) of a polydisperse
suspension of particles of paraffin oil (concentration 2.6%) in water which
confirm the effect of the entrainment of fine particles by coarse ones: 1) flo-
tation rate; 2) rate according to the Stokes law; 3) ratio of 1 to 2.
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which is in good agreement with (32), but the absolute values of the rates turn out to be much higher than in the
above example for a concentration of 2.6%.

Discussing this fact, Kumar et al. [3] point to the possible influence of the mechanism of the physico-
chemical nature on the interactions of particles with each other. Within the framework of the entrainment theory
developed here, this hypothesis can take the following form. Addition of the ions of salt to the solution decreases
the forces of repulsion between the particles, thus increasing their tendency toward mutual attraction [14]. This re-
sults in the fact that fine particles remain in the field of influence of large ones for a longer time and for a
longer time follow them with velocities substantially higher than their intrinsic Stokes values. The role of the
forces acting between the particles in sedimentation has been considered in [15] without using specific mechanisms
of this influence.

Formula (32) and the experimental data of [2] on sedimentation of fine quartz sand in a plate-type cen-
trifuge have been compared in [4, 5]. A satisfactory confirmation of the inverse-square-law dependence of the sedi-
mentation rate on the size of the particles of the fine fraction and a qualitative agreement regarding the influence
of the concentration of the coarse fraction have been found.

NOTATION

d, particle diameter, µm; g, acceleration of gravity or centrifugal acceleration, m ⁄ sec2; r, distance from the
center of the cell; rc and rf, radius of a coarse particle and a fine particle, m; t, time, sec; t(yj) = tj, time of stay
of the jth particle in the cell, sec; uc and uf, Stokes rate of settling of a coarse particle and a fine particle, m/sec;
u(x, y) and v(x, y), axial and radial velocities, m/sec; up(yj), mean velocity of traversal of the cell by an individual
particle, m/sec; supt, flux-mean velocity of traversal of the cell by an ensemble of particles, m/sec; yj, coordinate
of the entry of the jth particle into the cell, m; x and y, longitudinal and traverse coordinates, m; CV, volume
fraction of all the particles; CVc

, volume fraction of the coarse fraction; D, dimensionless radius of the cell; R, ra-
dius of the cell base, m; Re, Reynolds number; S(r), function; sUt, dimensionless mean velocity of motion of a
particle on a rectilinear portion; U and W, dimensionless axial and radial velocities; X and Y, dimensionless lon-
gitudinal and transverse coordinates; Y0, dimensionless transverse coordinate of the entry of the particle into the
cell; α, correction factor; η, dynamic viscosity of the liquid, Pa⋅sec; λ, coefficient of "neglect" of the particles in
the vicinity of the axial line; ν, kinematic viscosity of the liquid, m2 ⁄ sec; θ, angle of the spherical coordinate sys-
tem; ρ, density, kg ⁄ m3; τ, dimensionless time. Subscripts: c, coarse particle; f, fine particle; liq, liquid; p, particle;
r, stay (residence); 0, point of shift of the particle to a circular path; 1 and 3, rectilinear and circular portions of
the path of a fine particle; ∗ , point of disappearance of the circular portion.
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